Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 110
Filter
1.
Genes (Basel) ; 14(12)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38136967

ABSTRACT

Allergy to shellfishes, including mollusks and crustaceans, is a growing health concern worldwide. Crustacean shellfish is one of the "Big Eight" allergens designated by the U.S. Food and Drug Administration and is the major cause of food-induced anaphylaxis. Shrimp is one of the most consumed crustaceans triggering immunoglobulin E (IgE)-mediated allergic reactions. Over the past decades, the allergen repertoire of shrimp has been unveiled based on conventional immunodetection methods. With the availability of genomic data for penaeid shrimp and other technological advancements like transcriptomic approaches, new shrimp allergens have been identified and directed new insights into their expression levels, cross-reactivity, and functional impact. In this review paper, we summarize the current knowledge on shrimp allergens, as well as allergens from other crustaceans and mollusks. Specific emphasis is put on the genomic information of the shrimp allergens, their protein characteristics, and cross-reactivity among shrimp and other organisms.


Subject(s)
Hypersensitivity , Penaeidae , United States , Animals , Humans , Allergens/genetics , Shellfish , Mollusca , Penaeidae/genetics , Genomics
2.
Syst Biol ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37941464

ABSTRACT

For much of terrestrial biodiversity, the evolutionary pathways of adaptation from marine ancestors are poorly understood, and have usually been viewed as a binary trait. True crabs, the decapod crustacean infraorder Brachyura, comprise over 7,600 species representing a striking diversity of morphology and ecology, including repeated adaptation to non-marine habitats. Here, we reconstruct the evolutionary history of Brachyura using new and published sequences of 10 genes for 344 tips spanning 88 of 109 brachyuran families. Using 36 newly vetted fossil calibrations, we infer that brachyurans most likely diverged in the Triassic, with family-level splits in the late Cretaceous and early Paleogene. By contrast, the root age is underestimated with automated sampling of 328 fossil occurrences explicitly incorporated into the tree prior, suggesting such models are a poor fit under heterogeneous fossil preservation. We apply recently defined trait-by-environment associations to classify a gradient of transitions from marine to terrestrial lifestyles. We estimate that crabs left the marine environment at least seven and up to 17 times convergently, and returned to the sea from non-marine environments at least twice. Although the most highly terrestrial- and many freshwater-adapted crabs are concentrated in Thoracotremata, Bayesian threshold models of ancestral state reconstruction fail to identify shifts to higher terrestrial grades due to the degree of underlying change required. Lineages throughout our tree inhabit intertidal and marginal marine environments, corroborating the inference that the early stages of terrestrial adaptation have a lower threshold to evolve. Our framework and extensive new fossil and natural history datasets will enable future comparisons of non-marine adaptation at the morphological and molecular level. Crabs provide an important window into the early processes of adaptation to novel environments, and different degrees of evolutionary constraint that might help predict these pathways.

3.
Ecotoxicol Environ Saf ; 255: 114762, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36931085

ABSTRACT

Acid phosphatase(ACP) is an important immune enzyme in crustacean humoral immunity. At present, the research on ACP mainly focuses on the biochemical properties of the enzyme, while few studies on gene expression. In this study, ShACP was cloned and the effect of cadmium stress on the expression and function of ShACP in the freshwater crab Sinopotamon henanense was studied. Analysis of the ShACP sequence and tissue distribution results showed that the cDNA sequence of ShACP was 1629 bp, including 48 bp 5' untranslated region, 1209 bp open reading frame region, and 372 bp 3' untranslated region, encoding 402 amino acids. ShACP contained multiple phosphorylation sites and mainly played a role in the hemolymph. Under low-concentration cadmium stress, the body improved immunity by enhancing the expression of ShACP, while high-concentration cadmium stress inhibited the expression of ShACP. ShACP can promote the phagocytosis of hemocytes, while cadmium stress reduced the phagocytosis of hemocytes. This study provides a theoretical basis for further research on the immune system of crabs and is of great significance for the study of crustacean immune responses under heavy metal stress.


Subject(s)
Brachyura , Metals, Heavy , Animals , Cadmium/metabolism , Acid Phosphatase/genetics , Acid Phosphatase/metabolism , Metals, Heavy/metabolism , Fresh Water
4.
Fish Shellfish Immunol ; 134: 108565, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36702328

ABSTRACT

Prophenoloxidase (proPO) is essential in the prophenoloxidase-activating system (proPO-AS) which is important for defense against foreign infection in crustaceans. However, most studies have focused on expression in the presence of a single pathogenic bacterium, and very few have addressed the presence of environmental contaminants simultaneously, such as cadmium (Cd) and Aeromonas hydrophila. Our study aimed to investigate the function of proPO in the freshwater crab Sinopotamon henanense and the changes in its expression by Cd and infection of A. hydrophila. A novel proPO from the hemocytes of S. henanense (ShproPO) was found in this research, the full-length cDNA of ShproPO was 2620 bp of encoding a protein of 678 amino acids containing three typical hemocyanin domains. The ShproPO protein could be found in both the granular (GHc) and the semi-granular hemocytes (SGHc). The ShproPO mRNA was found to be abundantly expressed in hemocytes and could be influenced by A. hydrophila infection. These results indicate that ShproPO could be involved in the antibacterial process. Further research found that low concentrations of Cd could promote its expression after infection with A. hydrophila. Therefore, it was hypothesized that Cd disrupted the response of crabs to A. hydrophila infection. Subsequently, PO enzyme activity was found to be significantly reduced through in vivo RNA interference with ShproPO, and the results suggested that ShproPO is likely to be a key enzyme in the melanization response. Finally, ShproPO was found to significantly enhance the phagocytosis of A. hydrophila-infected hemocytes by in vitro recombination, confirming that ShproPO is involved in hemocyte-mediated melanization and phagocytosis. Our findings reveal completely new insight into the immunotoxicity of Cd and the immune function of ShproPO in S. henanense.


Subject(s)
Brachyura , Animals , Cadmium/toxicity , Aeromonas hydrophila/physiology , Cloning, Molecular , Fresh Water
5.
iScience ; 25(9): 105025, 2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36105587

ABSTRACT

Understanding the evolutionary history of the highly diverse ray-finned fishes has been challenging, and the development of more universal primers for phylogenetic analyses may help overcoming these challenges. We developed FishPIE, a nested PCR primer set of 82 phylogenetically informative exon markers, and tested it on 203 species from 31 orders of Actinopterygii. We combined orthologous sequences of the FishPIE markers obtained from published genomes and transcriptomes and constructed the phylogeny of 710 species belonging to 190 families and 60 orders. The resulting phylogenies had topologies comparable to previous phylogenomic studies. We demonstrated that the FishPIE markers could address phylogenetic questions across broad taxonomic levels. By incorporating the newly sequenced taxa, we were able to shed new light on the phylogeny of the highly diverse Cypriniformes. Thus, FishPIE holds great promise for generating genetic data for broad taxonomic groups and accelerating our understanding of the fish tree of life.

6.
Front Cell Dev Biol ; 10: 900321, 2022.
Article in English | MEDLINE | ID: mdl-36072338

ABSTRACT

Cnidarians including sea anemones, corals, hydra, and jellyfishes are a group of animals well known for their regeneration capacity. However, how non-coding RNAs such as microRNAs (also known as miRNAs) contribute to cnidarian tissue regeneration is poorly understood. Here, we sequenced and assembled the genome of the sea anemone Exaiptasia pallida collected in Hong Kong waters. The assembled genome size of E. pallida is 229.21 Mb with a scaffold N50 of 10.58 Mb and BUSCO completeness of 91.1%, representing a significantly improved genome assembly of this species. The organization of ANTP-class homeobox genes in this anthozoan further supported the previous findings in jellyfishes, where most of these genes are mainly located on three scaffolds. Tentacles of E. pallida were excised, and both mRNA and miRNA were sequenced at 9 time points (0 h, 6 h, 12 h, 18 h, 1 day, 2, 3, 6, and 8 days) from regenerating tentacles. In addition to the Wnt signaling pathway and homeobox genes that are shown to be likely involved in tissue regeneration as in other cnidarians, we have shown that GLWamide neuropeptides, and for the first time sesquiterpenoid pathway genes could potentially be involved in the late phase of cnidarian tissue regeneration. The established sea anemone model will be useful for further investigation of biology and evolution in, and the effect of climate change on this important group of animals.

7.
Mol Phylogenet Evol ; 177: 107596, 2022 12.
Article in English | MEDLINE | ID: mdl-35914646

ABSTRACT

The Thoracotremata is a large and successful group of "true" crabs (Decapoda, Brachyura, Eubrachyura) with a great diversity of lifestyles and well-known intertidal representatives. The group represents the largest brachyuran radiation into terrestrial and semi-terrestrial environments and comprises multiple lineages of obligate symbiotic species. In consequence, they exhibit very diverse physiological and morphological adaptations. Our understanding of their evolution is, however, largely obscured by their confused classification. Here, we resolve interfamilial relationships of Thoracotremata, using 10 molecular markers and exemplars from all nominal families in order to reconstruct the pathways of lifestyle transition and to prepare a new taxonomy corresponding to phylogenetic relationships. The results confirm the polyphyly of three superfamilies as currently defined (Grapsoidea, Ocypodoidea and Pinnotheroidea). At the family level, Dotillidae, Macrophthalmidae, and Varunidae are not monophyletic. Ancestral state reconstruction analyses and divergent time estimations indicate that the common ancestor of thoracotremes already thrived in intertidal environments in the Late Cretaceous and terrestrialization became a major driver of thoracotreme diversification. Multiple semi-terrestrial and terrestrial lineages originated and radiated in the Early Eocene, coinciding with the global warming event at the Paleocene-Eocene Thermal Maximum (PETM). Secondary invasions into subtidal regions and colonizations of freshwater habitats occurred independently through multiple semi-terrestrial and terrestrial lineages. Obligate symbiosis between thoracotremes and other marine macro-invertebrates evolved at least twice. On the basis of the current molecular phylogenetic hypothesis, it will be necessary in the future to revise and recognize seven monophyletic superfamilies and revisit the morphological character states which define them.


Subject(s)
Brachyura , Animals , Brachyura/genetics , Ecosystem , Fresh Water , Humans , Phylogeny , Symbiosis/genetics
8.
Allergy ; 77(10): 3041-3051, 2022 10.
Article in English | MEDLINE | ID: mdl-35567339

ABSTRACT

BACKGROUND: Clinical management of shrimp allergy is hampered by the lack of accurate tests. Molecular diagnosis has been shown to more accurately reflect the clinical reactivity but the full spectrum of shrimp allergens and their clinical relevance are yet to be established. We therefore sought to comprehend the allergen repertoire of shrimp, investigate and compare the sensitization pattern and diagnostic value of the allergens in allergic subjects of two distinct populations. METHODS: Sera were collected from 85 subjects with challenge-proven or doctor-diagnosed shrimp allergy in Hong Kong and Thailand. The IgE-binding proteins of Penaeus monodon were probed by Western blotting and identified by mass spectrometry. Recombinant shrimp allergens were synthesized and analyzed for IgE sensitization by ELISA. RESULTS: Ten IgE-binding proteins were identified, and a comprehensive panel of 11 recombinant shrimp allergens was generated. The major shrimp allergens among Hong Kong subjects were troponin C (Pen m 6) and glycogen phosphorylase (Pen m 14, 47.1%), tropomyosin (Pen m 1, 41.2%) and sarcoplasmic-calcium binding protein (Pen m 4, 35.3%), while those among Thai subjects were Pen m 1 (68.8%), Pen m 6 (50.0%) and fatty acid-binding protein (Pen m 13, 37.5%). Component-based tests yielded significantly higher area under curve values (0.77-0.96) than shrimp extract-IgE test (0.70-0.75). Yet the best component test differed between populations; Pen m 1-IgE test added diagnostic value only in the Thai cohort, whereas sensitizations to other components were better predictors of shrimp allergy in Hong Kong patients. CONCLUSION: Pen m 14 was identified as a novel shrimp allergen predictive of challenge outcome. Molecular diagnosis better predicts shrimp allergy than conventional tests, but the relevant component is population dependent.


Subject(s)
Food Hypersensitivity , Hypersensitivity , Allergens , Fatty Acid-Binding Proteins , Food Hypersensitivity/diagnosis , Humans , Immunoglobulin E , Tropomyosin , Troponin C
9.
PLoS One ; 17(1): e0262122, 2022.
Article in English | MEDLINE | ID: mdl-35025933

ABSTRACT

Due to the lack of visible barriers to gene flow, it was a long-standing assumption that marine coastal species are widely distributed, until molecular studies revealed geographically structured intraspecific genetic differentiation in many taxa. Historical events of sea level changes during glacial periods are known to have triggered sequential disjunctions and genetic divergences among populations, especially of coastal organisms. The Parasesarma bidens species complex so far includes three named plus potentially cryptic species of estuarine brachyuran crabs, distributed along East to Southeast Asia. The aim of the present study is to address phylogeography and uncover real and hidden biological diversity within this complex, by revealing the underlying genetic structure of populations and species throughout their distribution ranges from Japan to West Papua, with a comparison of mitochondrial COX1 and 16S rRNA gene sequences. Our results reveal that the P. bidens species complex consists of at least five distinct clades, resulting from four main cladogenesis events during the mid to late Pleistocene. Among those clades, P. cricotum and P. sanguimanus are recovered as monophyletic taxa. Geographically restricted endemic clades are encountered in southeastern Indonesia, Japan and China respectively, whereas the Philippines and Taiwan share two clades. As individuals of the Japanese clade can also be found in Taiwan, we provide evidence of a third lineage and the occurrence of a potential cryptic species on this island. Ocean level retreats during Pleistocene ice ages and present oceanic currents appear to be the main triggers for the divergences of the five clades that are here addressed as the P. bidens complex. Secondary range expansions converted Taiwan into the point of maximal overlap, sharing populations with Japan and the Philippines, but not with mainland China.


Subject(s)
Biodiversity , Brachyura/classification , Animals , Brachyura/genetics , China , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/genetics , Fossils/history , Genetics, Population , History, Ancient , Indonesia , Japan , Philippines , Phylogeny , Phylogeography , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, DNA , Taiwan
10.
Evolution ; 75(11): 2898-2910, 2021 11.
Article in English | MEDLINE | ID: mdl-34585374

ABSTRACT

One of the most notable evolutionary innovations of marine invertebrates is the snapping claw of alpheid shrimps (Alpheidae), capable of generating a powerful water jet and a shock wave, used for defense, aggression, excavation, and communication. Evolutionary analysis of this character complex requires the study of a suite of complementary traits to discern pre-adaptations or post-adaptations of snapping behavior. A comprehensive phylogenetic analysis of the Alpheidae based on two mitochondrial and four nuclear markers, covering 107 species from 38 genera (77.6% generic coverage), is presented. Ancestral state reconstruction analyses revealed five independent origins of snapping, two of which relate to the morphologically similar but phylogenetically distant genera Alpheus and Synalpheus, highlighting significant convergence. The evolution of the five complementary traits (adhesive plaques, tooth-cavity system, dactylar joint type, chela size enlargement, and orbital hood) did not always show a significant correlation with the evolution of snapping overall, sometimes only in a few lineages, suggesting different evolutionary pathways were involved and demonstrating the versatility in the evolution of the snapping mechanisms.


Subject(s)
Decapoda , Hoof and Claw , Acclimatization , Animals , Decapoda/genetics , Phenotype , Phylogeny
12.
Environ Sci Pollut Res Int ; 28(41): 58050-58067, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34101120

ABSTRACT

Cadmium (Cd) is a common pollutant in the aquatic environment, which puts the health and safety of aquatic organisms and humans at risk. In the present study, the freshwater crab Sinopotamon henanense was exposed to Cd (0, 50, 100, and 500 µg·L-1) for 14 d (0-14th d), followed by 21 d (14-35th d) of depuration. The changes in Cd bioaccumulation, microstructure, biomacromolecules (polysaccharides, neutral lipids, DNA and total proteins), and biochemical parameters (SOD, CAT, GR, TrxR, MDA and AChE) in the gills and hepatopancreas were tested. The injured microstructure, activated antioxidant system, increased MDA, and inhibited AChE of the gills and hepatopancreas responded with progressive bioaccumulation of Cd. Meanwhile, the polysaccharides and neutral lipids in the hepatopancreas reduced and DNA synthesis enhanced. During depuration, more than 58.80 ± 8.53% and 13.84 ± 12.11% of Cd was excreted from the gills and hepatopancreas, respectively. Recovery of microstructure and biomacromolecules as well as alleviated oxidative damage and neurotoxicity were also found in these two organs. Additionally, based on PCA, Ihis, GR and MDA were identified as the optimal biomarkers indicating the health status of crabs. In conclusion, S. henanense could resist Cd stress through antioxidant defence and self-detoxification.


Subject(s)
Brachyura , Water Pollutants, Chemical , Animals , Cadmium , Fresh Water , Gills , Hepatopancreas
13.
BMC Genomics ; 22(1): 313, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33931033

ABSTRACT

BACKGROUND: The complex life cycle of the coconut crab, Birgus latro, begins when an obligate terrestrial adult female visits the intertidal to hatch zoea larvae into the surf. After drifting for several weeks in the ocean, the post-larval glaucothoes settle in the shallow subtidal zone, undergo metamorphosis, and the early juveniles then subsequently make their way to land where they undergo further physiological changes that prevent them from ever entering the sea again. Here, we sequenced, assembled and analyzed the coconut crab genome to shed light on its adaptation to terrestrial life. For comparison, we also assembled the genomes of the long-tailed marine-living ornate spiny lobster, Panulirus ornatus, and the short-tailed marine-living red king crab, Paralithodes camtschaticus. Our selection of the latter two organisms furthermore allowed us to explore parallel evolution of the crab-like form in anomurans. RESULTS: All three assembled genomes are large, repeat-rich and AT-rich. Functional analysis reveals that the coconut crab has undergone proliferation of genes involved in the visual, respiratory, olfactory and cytoskeletal systems. Given that the coconut crab has atypical mitochondrial DNA compared to other anomurans, we argue that an abundance of kif22 and other significantly proliferated genes annotated with mitochondrial and microtubule functions, point to unique mechanisms involved in providing cellular energy via nuclear protein-coding genes supplementing mitochondrial and microtubule function. We furthermore detected in the coconut crab a significantly proliferated HOX gene, caudal, that has been associated with posterior development in Drosophila, but we could not definitively associate this gene with carcinization in the Anomura since it is also significantly proliferated in the ornate spiny lobster. However, a cuticle-associated coatomer gene, gammacop, that is significantly proliferated in the coconut crab, may play a role in hardening of the adult coconut crab abdomen in order to mitigate desiccation in terrestrial environments. CONCLUSION: The abundance of genomic features in the three assembled genomes serve as a source of hypotheses for future studies of anomuran environmental adaptations such as shell-utilization, perception of visual and olfactory cues in terrestrial environments, and cuticle sclerotization. We hypothesize that the coconut crab exhibits gene proliferation in lieu of alternative splicing as a terrestrial adaptation mechanism and propose life-stage transcriptomic assays to test this hypothesis.


Subject(s)
Anomura , Brachyura , Palinuridae , Animals , Brachyura/genetics , Cocos , Female , Genomics
14.
Nat Commun ; 12(1): 2395, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33888695

ABSTRACT

The infraorder Brachyura (true or short-tailed crabs) represents a successful group of marine invertebrates yet with limited genomic resources. Here we report a chromosome-anchored reference genome and transcriptomes of the Chinese mitten crab Eriocheir sinensis, a catadromous crab and invasive species with wide environmental tolerance, strong osmoregulatory capacity and high fertility. We show the expansion of specific gene families in the crab, including F-ATPase, which enhances our knowledge on the adaptive plasticity of this successful invasive species. Our analysis of spatio-temporal transcriptomes and the genome of E. sinensis and other decapods shows that brachyurization development is associated with down-regulation of Hox genes at the megalopa stage when tail shortening occurs. A better understanding of the molecular mechanism regulating sexual development is achieved by integrated analysis of multiple omics. These genomic resources significantly expand the gene repertoire of Brachyura, and provide insights into the biology of this group, and Crustacea in general.


Subject(s)
Adaptation, Physiological/genetics , Brachyura/physiology , Gene Expression Regulation, Developmental , Genome/genetics , Animals , Aquaculture , Chromosome Mapping , Female , Fertility/genetics , Gene Expression Profiling , Genes, Homeobox/genetics , Genomics , Introduced Species , Life Cycle Stages/genetics , Male , Multigene Family/genetics , Osmoregulation/genetics , Sexual Development/genetics , Spatio-Temporal Analysis , Whole Genome Sequencing
15.
Microb Ecol ; 82(4): 994-1007, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33629169

ABSTRACT

Gut microbiota have long attracted the interest of scientists due to their profound impact on the well-being of animals. A non-random pattern of microbial assembly that results in a parallelism between host phylogeny and microbial similarity is described as phylosymbiosis. Phylosymbiosis has been consistently observed in different clades of animal hosts, but there have been no studies on crustaceans. In this study, we investigated whether host phylogeny has an impact on the gut microbiota assemblages in decapod shrimps. We examined the gut microbial communities in 20 shrimp species from three families inhabiting distinct environments, using metabarcoding analyses of the V1-V3 hypervariable region of the 16S rRNA gene. Gut microbial communities varied within each shrimp group but were generally dominated by Proteobacteria. A prevalent phylosymbiotic pattern in shrimps was evidenced for the first time by the observations of (1) the distinguishability of microbial communities among species within each group, (2) a significantly lower intraspecific than interspecific gut microbial beta diversity across shrimp groups, (3) topological congruence between host phylogenetic trees and gut microbiota dendrograms, and (4) a correlation between host genetic distances and microbial dissimilarities. Consistent signals of phylosymbiosis were observed across all groups in dendrograms based on the unweighted UniFrac distances at 99% operational taxonomic units (OTUs) level and in Mantel tests based on the weighted UniFrac distances based on 97% OTUs and amplicon sequence variants. Penaeids exhibited phylosymbiosis in most tests, while phylosymbiotic signals in atyids and pandalids were only detected in fewer than half of the tests. A weak phylogenetic signal was detected in the predicted functions of the penaeid gut microbiota. However, the functional diversities of the two caridean groups were not significantly related to host phylogeny. Our observations of a parallelism in the taxonomy of the gut microbiota with host phylogeny for all shrimp groups examined and in the predicted functions for the penaeid shrimps indicate a tight host-microbial relationship during evolution.


Subject(s)
Decapoda , Gastrointestinal Microbiome , Animals , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , Symbiosis
16.
J Allergy Clin Immunol Pract ; 9(1): 236-244.e9, 2021 01.
Article in English | MEDLINE | ID: mdl-32931950

ABSTRACT

BACKGROUND: The diagnosis of shellfish allergy currently relies on patient history, skin prick test (SPT), and serum specific IgE (sIgE) quantification. These methods lack sufficient diagnostic accuracy, whereas the gold standard of oral food challenges is risky and burdensome. Markers of reactivity and severity of allergic reactions to shellfish will improve clinical care of these patients. OBJECTIVES: This study compared the diagnostic performance of SPT, sIgE, basophil activation test (BAT), and IgE crosslinking-induced luciferase expression (EXiLE) test for shrimp allergy. METHODS: Thirty-five subjects with documented history of shrimp allergic reactions were recruited and grouped according to results of double-blind, placebo-controlled food challenge (DBPCFC). In addition to routine diagnostics, BAT (Flow CAST) and EXiLE test with shrimp extract and tropomyosin were performed. RESULTS: Of 35 subjects, 15 were shrimp allergic with pruritus, urticaria, and itchy mouth on DBPCFC, whereas 20 were tolerant to shrimp. Tropomyosin only accounted for 53.3% of sensitization among subjects with challenge-proven shrimp allergy. BAT using shrimp extract as stimulant showed the highest area under curve value (0.88), Youden Index (0.81), likelihood ratio (14.73), odds ratio (104), and variable importance (4.27) when compared with other assays and tropomyosin diagnosis. Results of BAT significantly correlated with those of EXiLE (r = 0.664, P < .0001). CONCLUSIONS: BAT is a more accurate diagnostic marker for shrimp allergy than SPT and shrimp sIgE, whereas the EXiLE test based on an IgE crosslinking assay is a good alternative to BAT. Tropomyosin may not be the most important shrimp allergen in Chinese, which warrants further investigation to search for other major allergens and diagnostic markers.


Subject(s)
Food Hypersensitivity , Allergens , Animals , Food Hypersensitivity/diagnosis , Humans , Immunoglobulin E , Skin Tests , Tropomyosin
17.
Methods Mol Biol ; 2223: 337-355, 2021.
Article in English | MEDLINE | ID: mdl-33226603

ABSTRACT

Food allergy has been rising in prevalence over the last two decades, affecting more than 10% of the world population. Current management of IgE-mediated food allergy relies on avoidance and rescue medications; research into treatments that are safer and providing guaranteed and durable curative effects is, therefore, essential. T-cell epitope-based immunotherapy holds the potential for modulating food allergic responses without IgE cross-linking. In this chapter, we describe the methods in evaluating the therapeutic capacities of immunodominant T-cell epitopes in animal models of food allergy. Moreover, we explain in detail the methods to measure the allergen-specific antibody levels, prepare single-cell suspension from spleen, and prepare small intestine for immunohistochemical analysis of eosinophils and Foxp3+ cells.


Subject(s)
Allergens/administration & dosage , Desensitization, Immunologic/methods , Disease Models, Animal , Egg Hypersensitivity/therapy , Milk Hypersensitivity/therapy , Peptides/pharmacology , Shellfish Hypersensitivity/therapy , Adjuvants, Immunologic/administration & dosage , Administration, Oral , Aluminum Hydroxide/administration & dosage , Animals , Cholera Toxin/administration & dosage , Egg Hypersensitivity/immunology , Egg Hypersensitivity/pathology , Enzyme-Linked Immunosorbent Assay/methods , Eosinophils/drug effects , Eosinophils/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunoglobulin E/genetics , Immunoglobulin E/immunology , Immunohistochemistry/methods , Intestines/drug effects , Intestines/immunology , Mice, Inbred BALB C , Milk Hypersensitivity/immunology , Milk Hypersensitivity/pathology , Peptides/immunology , Shellfish Hypersensitivity/immunology , Shellfish Hypersensitivity/pathology , Spleen/drug effects , Spleen/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology
18.
Sci Rep ; 10(1): 21771, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33303836

ABSTRACT

Osmoregulation and osmoconformation are two mechanisms through which aquatic animals adapt to salinity fluctuations. The euryhaline crab Scylla paramamosain, being both an osmoconformer and osmoregulator, is an excellent model organism to investigate salinity adaptation mechanisms in brachyurans. In the present study, we used transcriptomic and proteomic approaches to investigate the response of S. paramamosain to salinity stress. Crabs were transferred from a salinity of 25 ppt to salinities of 5 ppt or 33 ppt for 6 h and 10 days. Data from both approaches revealed that exposure to 5 ppt resulted in upregulation of ion transport and energy metabolism associated genes. Notably, acclimation to low salinity was associated with early changes in gene expression for signal transduction and stress response. In contrast, exposure to 33 ppt resulted in upregulation of genes related to amino acid metabolism, and amino acid transport genes were upregulated only at the early stage of acclimation to this salinity. Our study reveals contrasting mechanisms underlying osmoregulation and osmoconformation within the salinity range of 5-33 ppt in the mud crab, and provides novel candidate genes for osmotic signal transduction, thereby providing insights on understanding the salinity adaptation mechanisms of brachyuran crabs.


Subject(s)
Adaptation, Physiological/genetics , Adaptation, Physiological/physiology , Brachyura/genetics , Brachyura/physiology , Osmoregulation/genetics , Osmoregulation/physiology , Salinity , Salt Stress/genetics , Salt Stress/physiology , Animals , Brachyura/metabolism , Energy Metabolism , Gene Expression , Ion Transport , Proteomics , Signal Transduction/genetics , Signal Transduction/physiology , Transcriptome
19.
Nat Commun ; 11(1): 3051, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32561724

ABSTRACT

The phylum Cnidaria represents a close outgroup to Bilateria and includes familiar animals including sea anemones, corals, hydroids, and jellyfish. Here we report genome sequencing and assembly for true jellyfish Sanderia malayensis and Rhopilema esculentum. The homeobox gene clusters are characterised by interdigitation of Hox, NK, and Hox-like genes revealing an alternate pathway of ANTP class gene dispersal and an intact three gene ParaHox cluster. The mitochondrial genomes are linear but, unlike in Hydra, we do not detect nuclear copies, suggesting that linear plastid genomes are not necessarily prone to integration. Genes for sesquiterpenoid hormone production, typical for arthropods, are also now found in cnidarians. Somatic and germline cells both express piwi-interacting RNAs in jellyfish revealing a conserved cnidarian feature, and evidence for tissue-specific microRNA arm switching as found in Bilateria is detected. Jellyfish genomes reveal a mosaic of conserved and divergent genomic characters evolved from a shared ancestral genetic architecture.


Subject(s)
Genes, Homeobox , Multigene Family , RNA/genetics , Scyphozoa/genetics , Scyphozoa/physiology , Animals , Developmental Biology , Genome , Genome, Mitochondrial , Hormones/genetics , MicroRNAs/genetics , Mitochondria/genetics , Phylogeny , Plastids/genetics , RNA, Small Interfering/genetics , Sequence Analysis, DNA , Species Specificity , Transcriptome
20.
Mol Biol Evol ; 37(10): 2955-2965, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32521021

ABSTRACT

A striking feature of micro-RNAs is that they are often clustered in the genomes of animals. The functional and evolutionary consequences of this clustering remain obscure. Here, we investigated a micro-RNA cluster miR-6/5/4/286/3/309 that is conserved across drosophilid lineages. Small RNA sequencing revealed expression of this micro-RNA cluster in Drosophila melanogaster leg discs, and conditional overexpression of the whole cluster resulted in leg appendage shortening. Transgenic overexpression lines expressing different combinations of micro-RNA cluster members were also constructed. Expression of individual micro-RNAs from the cluster resulted in a normal wild-type phenotype, but either the expression of several ancient micro-RNAs together (miR-5/4/286/3/309) or more recently evolved clustered micro-RNAs (miR-6-1/2/3) can recapitulate the phenotypes generated by the whole-cluster overexpression. Screening of transgenic fly lines revealed downregulation of leg-patterning gene cassettes in generation of the leg-shortening phenotype. Furthermore, cell transfection with different combinations of micro-RNA cluster members revealed a suite of downstream genes targeted by all cluster members, as well as complements of targets that are unique for distinct micro-RNAs. Considered together, the micro-RNA targets and the evolutionary ages of each micro-RNA in the cluster demonstrate the importance of micro-RNA clustering, where new members can reinforce and modify the selection forces on both the cluster regulation and the gene regulatory network of existing micro-RNAs. Key words: micro-RNA, cluster, evolution.


Subject(s)
Drosophila melanogaster/genetics , Evolution, Molecular , MicroRNAs/genetics , Animals , Base Sequence , Conserved Sequence , Drosophila melanogaster/metabolism , Female , Male , MicroRNAs/metabolism , Multigene Family , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...